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Abstract

The Russian space station Mir is a solid body with unequal principal moments of inertia.  Free body 

rotations initially begun about the middle principle axis, in general develop into rotations about the other 

pair of axes, in the course of free motion.  This motion is problematic for a station that has lost attitude 

control, and that must maintain its solar arrays directed toward the sun, to maintain electrical power. 

This paper uses  methods of Euler to calculate the resultant motion of the Mir in inertial space, with 

given  total angular momentum and specified initial angular velocities about the solid body axes.  The 

results are used to illustrate the difficulty of setting up an initial free rotation suitable to provide constant 

illumination of the Mir solar arrays. 

Electric Power and Attitude Control on Station Mir
During the summer of 1997, the Russian space station Mir suffered a number of problems, resulting in 

the total loss of attitude control.  A specific inertial attitude is essential for the Mir to keep its solar arrays 

illuminated by the sun.  A rapid energy shortfall, and total loss of power to the station,  can result if the 

arrays are not in a suitable orientation.  The usual system of attitude control utilizes sets of momentum 

wheels, called gyrodynes, spun at high speeds, to provide reactive torques to keep the Mir inertially 

stable.  When an attitude control failure occurs, the angular momentum stored in the gyrodynes is 

passed into the Mir body as a whole, as the gyrodynes slowly brake their rotation.  So even if the Mir 

looses attitude control in a good orientation with no initial rotation rates, rates build up over the course 

of hours in all Mir axes, as the gyrodynes spin down.

The immediate problem presented to the crew of Mir, is the establishment of a free body rotation of the 

Mir to provide sufficient solar illumination of the arrays.  With some electrical energy restored, contact 

with the ground controllers can be established, and workarounds developed to replace the attitude 

control system box that had failed.  The solution developed using the Soyuz transport spacecraft was 

very crude, but effective.  The Soyuz  docked to the Mir has a power system independent of the Mir, 

enabling it to be powered even when the station is not. The Soyuz reaction control jets were manually 

fired to first arrest the resultant rotation caused by the gyrodines, and then subsequently to reorient Mir, 

followed finally by a spin of Mir.  However, because of the tiny roll moment arm of the Soyuz jets about 

the Mir long axis, rotation about this axis could not be influenced, complicating the resultant rotation 

dynamics of Mir.  

Much time was spent by the crew considering the effects of initial rotations on the resultant rotation 

dynamics of Mir.  This paper presents the equations and visualization model that permit the correct 

rotation impulse strategy to be applied.

Definition of the Euler Transformation Matrices
To transform motions about the Mir body axes into the inertial reference frame,  define three Euler 

angles ϕ, θ, ψ as arguments of  three rotation matrices. These matrices will be combined into one 

matrix to provide for a general multiaxis rotation. The Euler matrices Lϕ, Lθ, Lψ  rotate from the inertial 

unprimed frame x to the primed frame x′ use the form x′ = Lϕ x where x is a vector in inertial space.  

First rotate about the inertial space axis z, to get to the first primed frame..

In[1]:= Lϕ =

cos(ϕ) sin(ϕ) 0
-sin(ϕ) cos(ϕ) 0
0 0 1

;

At this point x
_

= Lϕ x. Now we rotate about the primed frame y axis, by θ

In[2]:= Lθ =

cos(θ) 0 -sin(θ)
0 1 0

sin(θ) 0 cos(θ)
;

At this point x = Lθ x .  Now rotate about the double primed frame axis about the primed frame z axis 

(note, not x, since this is the Euler system)

In[3]:= Lψ =

cos(ψ) sin(ψ) 0
-sin(ψ) cos(ψ) 0
0 0 1

;

Finally x = Lψ x . Define Lψθϕ to be the combined solid body rotation matrix L = Lψ Lθ Lϕ and LT  be its 

inverse such that Lψθϕ
T = Lϕ

T Lθ
T Lψ

T

In[4]:= Lψθϕ = Lψ.Lθ.Lϕ

Out[4]= {{Cos[θ] Cos[ϕ] Cos[ψ] - Sin[ϕ] Sin[ψ],

Cos[θ] Cos[ψ] Sin[ϕ] + Cos[ϕ] Sin[ψ], -Cos[ψ] Sin[θ]},

{-Cos[ψ] Sin[ϕ] - Cos[θ] Cos[ϕ] Sin[ψ], Cos[ϕ] Cos[ψ] - Cos[θ] Sin[ϕ] Sin[ψ],

Sin[θ] Sin[ψ]}, {Cos[ϕ] Sin[θ], Sin[θ] Sin[ϕ], Cos[θ]}}

Definition of Inertia Tensor and Euler's Equations
The angular momentum J of a collection of particles with momentum P α for each particle α , with a 

position vector (r)α relative to some origin in inertial space is

                         J = Σ
α

r
α ⋀ P

α              

where P α is given by P α = mα Ω ^ r
α .  Expanding the summation, and using Einstein summation 

indices, we can define the inertia tensor Ii j that combines with the body angular momentum vector ω to 

give the net angular momentum Ji.

Ji = Σ
α
mα r2

(α)

δi j - ri rj ωj = Ii j ωj

Ii j = Σ
α
mα r2

(α)

δi j - ri rj δi j is the identity matrix

    

In an arbitrary body coordinate system, for an irregular body like the Mir, Ii j is not diagonal.  However a 

set of coordinate axes can be found in the solid body that correspond to the eigen vectors of Ii j, given 

by I ω = λω = J.  The eigen values λ of I are the three principal moments of inertia A, B, C about the 

three orthogonal  eigen vectors defined as ω1, ω2, ω3.  If the body has axes of symmetry, then the ω's 

are in the same direction as the axes of symmetry.  For arbitrary directions of J , the equation J = I ω 

implies that ω will not be in the same direction as J.  The coupling of the components ω1, ω2, ω3 to 

each other through the principle moments of inertia A, B, C is given by the Euler equations, if no 

external forces are acting. The general Euler equations are .  
(C - B) ω2 ω3 + A ω


1 = 0

(A - C) ω1 ω3 + B ω

2 = 0

(B - A) ω1 ω2 + C ω

3 = 0

The ω's are evaluated in the body axes of the rotating frame. The total angular momentum is 

J = (Aω1)
2 + (Bω2)

2 + (Cω3)
2        and        Ω1 =

J2-C2 n2-B2 Ω2
2

A
  as we intend to specify J, ω2  

and n =ω3 as initial  conditions.

for initial values for ω1, ω2, ω3 to be Ω1, Ω2, n respectively.  Obtaining solutions for the ω's in the fixed 

body frame, these must be related to the Euler angles ϕ, θ, ψ of the body to inertial transformation 

matrices Lψ, Lθ, Lϕ. 

In[5]:= Lψ. Lθ.
0
0
ϕ′

+

0
θ′

0
+

0
0
ψ′

==

ω1(t)

ω2(t)

ω3(t)

Out[5]= {{Sin[ψ] θ′ - Cos[ψ] Sin[θ] ϕ′}, {Cos[ψ] θ′ + Sin[θ] Sin[ψ] ϕ′}, {Cos[θ] ϕ′ + ψ′}} ⩵

{{ω1[t]}, {ω2[t]}, {ω3[t]}}

These three additional equations can be solved simultaneously with the Euler equations to give solu-

tions for the six parameters ω1, ω2, ω3,  ϕ, θ, ψ as a function of time.

The solution of Euler's equations  

Dynamic Equations 

The Euler equations are 

In[6]:= eqn1 = A ∂tω1[t] + (C - B) ω2[t] ω3[t] == 0;

eqn2 = B ∂tω2[t] + (A - C) ω1[t] ω3[t] == 0;

eqn3 = C ∂tω3[t] + (B - A) ω1[t] ω2[t] == 0;

The total angular momentum and initial conditions are

In[9]:= initialconditions = {t → 0, ω1[t] → Ω1, ω2[t] → Ω2, ω3[t] → n};

Jrule = JTotal → (A ω1[t])2 + (B ω2[t])2 + (C ω3[t])2 ;

In[11]:= omega1rule = Ω1 →
J2 - C2 n2 - B2 Ω22

A
;

The Euler angles ϕ, θ, ψ using the transformation matrices Lψ, Lθ, Lϕ give the equations

In[12]:= eqn4 = Sin[ψ[t]] θ
′
[t] - Cos[ψ[t]] Sin[θ[t]] ϕ

′
[t] == ω1[t];

eqn5 = Cos[ψ[t]] θ
′
[t] + Sin[θ[t]] Sin[ψ[t]] ϕ

′
[t] == ω2[t];

eqn6 = Cos[θ[t]] ϕ
′
[t] + ψ

′
[t] == ω3[t];

For display purposes, the initial Euler angles will be chosen so that output plots of the motion have the 

net angular momentum directed along the z-axis.  The Euler angles ψ0, θ0, ϕ0  at t = 0 are given by the 

transformation 

In[15]:= Lψθϕ.
0
0
J

==

AΩ1
BΩ2
C n

Out[15]= {{-J Cos[ψ] Sin[θ]}, {J Sin[θ] Sin[ψ]}, {J Cos[θ]}} ⩵ {{A Ω1}, {B Ω2}, {C n}}

Solve 2 equations for 2 initial angles, the angle ϕ being indeterminate. 

In[16]:= Solve[{J Sin[ψ0] Sin[θ0] == BΩ2, J Cos[θ0] == C n }, {θ0, ψ0}] /. initialconditions // First

Out[16]= θ0 → ConditionalExpressionArcTan
C n

J
, -

J2 - C2 n2

J
 + 2 π C[1], C[1] ∈ Integers,

ψ0 → ConditionalExpression-ArcSin
BΩ2

J2 - C2 n2
 + 2 π C[2], C[2] ∈ Integers

The first solution in the list will be used, using a small initial Ω2 with positive value, so that there is 

correspondence with the analytic solution found elsewhere for the case of the symmetric top when 

A = B ≠ C.

In[17]:= anglerule = ψ0 → -ArcSin
B Ω2

J2 - C2 n2
, θ0 → -ArcCos

C n

J
;

Initial Conditions

The task is to solve the six parameters ω1, ω2, ω3,  ϕ, θ, ψ as a function of time, starting with initial 

values for each of the parameters, using the three principle moments of inertia A, B, C for the Mir 

station.  The principal axes of inertia of Mir roughly coincide with the module axes originating from the 

center section, known as the node.  Although the Mir's  moments of inertia cannot be known at any one 

time precisely, because of the uncertain arrangement of internal stores through out the Mir, the basic 

fixed hardware results in moments of inertia whose ratios can be characterized by setting 

A = 1, B ≃ 1.5, C ≃ 1.2 . The initial values for ω1, ω2, ω3 are denoted to be Ω1, Ω2, and n respectively.  

The rate about the C axis is denoted as n, distinguishing it from the other two axes, because it was 

about this axis that a spin was attempted to be established manually, using the Soyuz spacecraft.  The 

crew attempted to begin the spin with Ω1 about the A axis, and Ω2 about the B axis as small as possible.  

However, because of the lack of Soyuz control moment about the A axis (Soyuz is docked along this 

axis), Ω1 could not be controlled, or reduced from the value developed during gyrodyne braking, so here 

Ω1 is simply calculated from initial values of J and n, and Ω2.  Note that we are using dimensionless 

quantities, and that our time parameter t should be scaled roughly by 20 to get the physical time in 

minutes. 

Tmax is the total time of integration. Define a very small real number ϵ to avoid causing difficulties in 

NDSolve. List our Mir physical properties as a single list, called dynamics.

In[18]:= tmax = 100;

ϵ = 0.0000000001;

dynamics = {A -> 1, B -> 1.5, C -> 1.4, J -> 3.1, Ω2 -> ϵ, n -> 2};

Check the consistency of our parameters, by finding the minimum value of J for n, assuming Ω1 = 0.

In[21]:= JTotal /. Jrule /. initialconditions /. Ω1 -> 0 /. dynamics

Out[21]= 2.8

This should always be less than the J value specified in dynamics, to ensure a non-imaginary value for 

Ω1.

In[22]:=

Ω1 /. anglerule /. omega1rule /. dynamics

Out[22]= 1.33041

Numerical Solutions

Using the parameters given, the Euler equations are solved simultaneously with the 3 equations for the 

Euler angles, applying our geometric constraint anglerule that J be directed along the inertial Z axis.

In[23]:= soln = NDSolve[

{eqn1, eqn2, eqn3, eqn4, eqn5, eqn6, ω1[0] == Ω1, ω2[0] == Ω2, ω3[0] == n, ϕ[0] == ϵ,

θ[0] == θ0, ψ[0] == ψ0} /. anglerule /. omega1rule /. dynamics ,

{ω1, ω2, ω3, ϕ, θ, ψ}, {t, 0, tmax}, MaxSteps -> 40000];

To understand our solution from the point of the crew members on board Mir, plot the angular rates 

ω1, ω2, ω3  as observed about the three principle axes of Mir.  These can be measured directly by the 

crew, utilizing the stars as an inertial reference.  It is apparent that the motion is that of an irregular 

body, with most angular momentum about its middle axis of inertia, causing an unstable exchange of 

angular momentum between the principle axes.  Although the Mir starts spinning initially about the C 

axis, after t = 9 the direction of rotation is reversed, and oscillates with a period of roughly t = 35 .  The 

spin about the A axis, initially small, grows periodically, but never reverses.

In[24]:= Plot[Evaluate[{ω1[t], ω2[t], ω3[t]} /.soln], {t, 0, tmax},

PlotStyle → {{}, {Dashing[{0.02`}]}, {Dashing[{0.04`}]}}, PlotRange → All]

Out[24]=
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Solid curve is ω1, Short dashed curve is ω2, Long dashed curve is ω3

Three Dimensional Graphical Depiction of Mir Rotation

A Graphical Model of the Mir

A Mir model is constructed, using polygons, and then rotated repeatedly to create an animation of the 

Mir rotation in inertial space.  However, it is necessary to define the behaviour of the function 

RotateShape, so that the Euler transformation matrices defined above are used to perform the rotations 

as a function of ϕ,θ,ψ rather than the matrix built into the package, which uses a different Euler conven-

tion θ about x..  To carry out the transformation from the body axes to inertial axes, the transformation 

Lψθϕ
T  is used.  The y-convention has 

ϕx =ϕy +π/2, ψx = ψy -π /2  ( http://mathworld.wolfram.com/EulerAngles.html)

 and the Rotate function needs a quaternion form of input, specifying a 3D vector about which a rotation 

ϕ  is performed.

In[25]:= eulervector[ϕ_, θ_, ψ_] := Module{e0 = 0, e1 = 0, e2 = 0, e3 = 0, ϕ1, ψ1},

ϕ1 = ϕ + π  2;

ψ1 = ψ - π  2;

e0 = Cosϕ1 + ψ1  2 Cosθ  2;

e1 = Cosϕ1 - ψ1  2 Sinθ  2;

e2 = Sinϕ1 - ψ1  2 Sinθ  2;

e3 = Sinϕ1 + ψ1  2 Cosθ  2;

{e1, e2, e3}

In[26]:= eulerangle[ϕ_, θ_, ψ_] := Module{e0, phi},

e0 = Cos(ϕ + ψ)  2 Cosθ  2;

phi = 2 * ArcCos[e0]



This notebook has been successively modified to work in Mathematica versions 

5.0, 6.0, and now 10.0.  The following custom definitions of graphics transforma-

tions are the way compatibility was maintained.  The following were defined in 

previous versions, but are still used in this notebook.

"RotateShape[graphics3D, phi, theta, psi] rotates  the three-dimensional graphics object by the speci-

fied Euler angles.

"TranslateShape[graphics3D, {x, y, z}] translates  the three-dimensional graphics object by the specified 

vector."

 "AffineShape[graphics3D, {x, y, z}] multiplies  all coordinates of the three-dimensional graphics object 

by  the respective scale factors x, y, and z."

 

 "Cone[(r:1, h:1, (n:20r))] is a list of n polygons approximating a cone centered around the z-axis with 

radius r and extending from -h to h."

 

 "Sphere[(r, (n:20r, m:15r))] is a list of n*(m-2)+2 polygons approximating a sphere with radius r."

 

 "Cylinder[(r, h:1, (n:20r))] is a list of n polygons approximating an open cylinder centered around the z-

axis with radius r and half height h."

In[27]:= RotateShape[a_, ϕ_, θ_, ψ_] := Rotate[a, eulerangle[ϕ, θ, ψ], eulervector[ϕ, θ, ψ]]

Mathematica 10 needed this addition to RotateShape, to cover the identity case

In[28]:= RotateShape[a_, 0, 0, 0] := a

In[29]:= AffineShape[a_, {x_, y_, z_}] := Scale[a, {x, y, z}, {0, 0, 0}]

In[30]:= TranslateShape[g_, {x_, y_, z_}] := Translate[Evaluate[g], {x, y, z}]

In[31]:= sphere[r_] := Sphere[{0, 0, 0}, r];

In[32]:= cone[r_?NumericQ, h_?NumericQ, n_Integer] :=

NTablePolygon{r Cos[2 Pi i / n], r Sin[2 Pi i / n], -h},

r Cos2 Pi i + 1  n, r Sin2 Pi i + 1  n, -h,

{0, 0, h}, {i, 0, n - 1};

In[33]:= cylinder[r_, h_] := Cylinder[{{0, 0, -h}, {0, 0, h}}, r];

The Mir graphical model is limited in its fidelity, but includes a depiction of the solar arrays, critical in 

their arrangement toward the sun.

Style is only detected by Graphics3D. However, it prevents the unmodified RotateShape from operating 

on its graphic primitive arguments.

For 3D surfaces, explicit GrayLevel  directives define surface colors; the final shading depends on 

lighting. Light sources with color specifications of the form dcol, Specularity[scol] are effec-

tively taken to have colors dcol for purposes of diffuse reflection, and scol for purposes of specular 

reflection.  »

In[34]:= solararray =

Style[Polygon[{{-2, 0.3`, 0}, {2, 0.3`, 0}, {2, -0.3`, 0}, {-2, -0.333`, 0}}],

{RGBColor[0.7019607843137254`, 0.3686274509803922`, 0.`],

Specularity[White, 3] , Lighting →

{{"Point", White, {0, 0, 100}}, {"Point", White, {0, 0, -50}, {0, 0, 3}}}}];

Graphics3D[solararray]

Out[35]=

In[36]:= mirbody = Style[{RGBColor[0.`, 0.5019607843137255`, 0.5019607843137255`],

Cylinder[{{-1, 0, 0}, {5, 0, 0}}, .4],

RGBColor[0.8666666666666667`, 0.4117647058823529`, 0.`],

Cylinder[{{0, -2.9`, 0}, {0, 4, 0}}, .4],

RGBColor[0.8470588235294118`, 0.8470588235294118`, 0.8470588235294118`],

Cylinder[{{0, 0, -3.5}, {0, 0, 3.5}}, .4]},

{Specularity[White, 50] , Lighting → {{"Point", White, {20, 0, 100}},

{"Point", White, {0, 0, -50}, {0, 0, 2}}}}];

Graphics3D[

mirbody]

Out[37]=

In[38]:= soyuz = Style[{RGBColor[0`, 0.3333333333333333`, 0.11380178530556191`],

sphere[0.3`], Cylinder[{{0, 0, .2}, {0, 0, .7}}, .28],

Cylinder[{{0, 0, .70}, {0, 0, 1.3}}, .3]},

{Specularity[White, 50] , Lighting → {{"Point", White, {20, 0, 100}},

{"Point", White, {0, 0, -50}, {0, 0, 3}}}}],

TranslateShapeRotateShapeAffineShape[solararray, {.55, .45, .5}],
π

2
,

π

2
,

π

2
,

{0`, 0, .9};

Graphics3D[

soyuz]

Out[39]=

In[40]:= earth = Style[Sphere[{0, 0, -30}, 25],

RGBColor[0, .1, 1], {Specularity[RGBColor[.2, .5, 1], 10],

Lighting → {{"Point", RGBColor[1, 1, .8], {0, 0, 20}}}}];

Graphics3D[

earth]

Out[41]=

gimbal is the angle cosine of the array rotation toward the sun 

In[42]:= gimbal = .2;

In[43]:= mir = mirbody,

Stylesphere[0.8`],

TranslateShapeRotateShapecylinder[0.7`, 1.1`], 0,
π

2
, 0, {2.0`, 0, 0},

TranslateShapeRotateShapecylinder[0.7`, 0.7`], 0,
π

2
, 0, {4.0`, 0, 0},

TranslateShape[RotateShape[cylinder[0.5`, 0.9`], 0, 0, 0], {0, 0, 1.8`}],

TranslateShape[RotateShape[cylinder[0.5`, 0.9`], 0, 0, 0], {0, 0, -1.7`}],

TranslateShapeRotateShapecylinder[0.5`, 1],
π

2
,

π

2
, 0, {0, 1.8, 0},

TranslateShapeRotateShapecylinder[0.5`, 0.9`],
π

2
,

π

2
, 0, {0, -1.7`, 0},

{RGBColor[1.`, 0.9725490196078431`, 0.9411764705882353`],

Specularity[White, 50] , Lighting →

{{"Point", White, {0, 0, 100}}, {"Point", White, {0, 0, -50}, {0, 0, 5}}}},

TranslateShapeRotateShapesolararray, 0, gimbal,
π

2
, {4, -2.8`, 0},

TranslateShapeRotateShapesolararray, 0, gimbal,
π

2
, {4, 2.8`, 0},

TranslateShapeRotateShapeAffineShape[solararray, {0.7, 1.1, 1}],

0, gimbal + .05,
π

2
, {2, -2.2, 0}, TranslateShapeRotateShape

AffineShape[solararray, {0.7, 1.1, 1}], 0, gimbal - .05,
π

2
, {2, 2.2, 0},

TranslateShapeRotateShapeAffineShape[solararray, {.9, 1.1, 1}], -
π

2
,

π

8
, 0,

{0, -2.1, -3.8`}, TranslateShape

RotateShapeAffineShape[solararray, {.9, 1.1, 1}],
π

2
,

π

8
, 0, {0, 2.1, -3.8`},

TranslateShapeRotateShapeAffineShape[solararray, {.7, 1.1, 1}],

0, gimbal - .03,
π

2
, {0, -2, -2.0`}, TranslateShapeRotateShape

AffineShape[solararray, {.7, 1.1, 1}], 0, gimbal + .03,
π

2
, {0, 2, -2.0`},

TranslateShapeRotateShapeAffineShape[solararray, {.7, 1.1, 1}],

0, gimbal + .04,
π

2
, {0, -2, 2.0`}, TranslateShapeRotateShape

AffineShape[solararray, {.7, 1.1, 1}], 0, gimbal - .04,
π

2
, {0, 2, 2.0`},

TranslateShapeRotateShapesoyuz, 0,
-π

2
,

-π

4
, {-1.4`, 0, 0},

TranslateShapeRotateShapesoyuz, 0,
π

2
,

-π

2
, {5.4, 0, 0}

;

Graphics3DRotateShapemir, .2, π  3, .3, earth,

PlotRange → {{-20, 20}, {-20, 20}, {-20, 20}},

Background → Black, Boxed → False, ImageSize → {640, 360}

Out[44]=

Use a ColorSlider to pick some good values for graphics depiction

In[45]:= {ColorSlider[Dynamic[x]], Dynamic[x]}

Out[45]=  , 

You can specify the diffuse color and specular  properties of a 3D surface using this form.

Style[Sphere[{0, 0, -30}, 25], Blue, Specularity[ White, 10], 

 Lighting → {{"Point", RGBColor[1, 1, .5], {0, 0, 6}}}]

In[46]:= Show[Graphics3D[mir], Graphics3D[

{Text[Style["A", FontFamily → "Arial", FontWeight → "Bold", FontSize → 20],

{7, 0, 0}], Text[Style["B", FontFamily → "Arial",

FontWeight → "Bold", FontSize → 20], {0, 6, 0}],

Text[Style["C", FontFamily → "Arial", FontWeight → "Bold", FontSize → 20],

{0, 0, 4}], Text["Soyuz", {-4, 0, 0}]}],

PlotRange → {{-7, 7}, {-7, 7}, {-7, 7}}, BoxRatios → {1, 1, 1},

Axes → True, AxesLabel → {"X", "Y", "Z"},

ViewPoint → {1.864`, -2.603`, 1.096`}]

Out[46]=

The three priciple axes A, B, C are shown, and the Soyuz space craft is represented as a slender cone 

on the -A axis. The center of mass of the Mir is roughly located at the central sphere, representing the 

node.  It should be noted that the moment arm of the Soyuz reaction control jets at the end of the arm 

from the center of mass is small compared to the dimensions of the Mir.  Effectively, only rotations 

about the B and C axes are achievable without excessive usage of Soyuz fuel. The orientation of the 

Mir is roughly that desired at the start of a manual rotation, if the sun is located on the +Z axis.  The 

critical solar arrays are mounted perpendicular to the Base Block of the Mir, which are the two cylinders 

along the A axis.  The arrays are able to slowly rotate about their long axes to be as perpendicular as 

possible to the line of sight toward the sun.  

Animated 3D Rotation of Mir

The Mir model is animated using the calculated interpolation functions for ϕ,θ,ψ. 

In[47]:= ϕ0 = 0; θ0 = 0; ψ0 = 0; Ω2 = ϵ; tmax = 50;

dynamics = {A -> 1, B -> 1.5, C -> 1.4};

In[49]:= Manipulate[ϕ0 = phi;

θ0 = theta;

ψ0 = psi;

Show[Graphics3D[{RotateShape[mir, phi, theta, psi],

earth},

PlotRange → {{-25, 25}, {-25, 25}, {-25, 25}},

Background → Black, Boxed → False, ViewAngle → 0.1100476206520342,

ViewPoint → {1.23104824039269, -1.9974476184274452`, 2.4381803135667774`}]],

{{phi, ϵ, "ϕ"}, 0, 6.283}, {{theta, ϵ, "θ"}, ϵ , 3.1416}, {{psi, ϵ, "ψ"}, 0, 6.283}]
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In[50]:= Dynamic[Plot[Evaluate[{ω1[t], ω2[t], ω3[t]} /.soln], {t, 0, tmax},

PlotStyle → {{}, {Dashing[{0.02`}]}, {Dashing[{0.04`}]}}, PlotRange → All]]

Out[50]=
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In[51]:= Define video resolution to be output
Out[51]= be Define output resolution to video

In[52]:= xres = 1280; yres = 720; screenratio = xres / yres

Out[52]=
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In[54]:= Manipulatem0 = m;

y0 = y;

z0 = z;

soln = NDSolve[{eqn1, eqn2, eqn3, eqn4, eqn5, eqn6, ω1[0] == Ω1,

ω2[0] == Ω2, ω3[0] ⩵ n, ϕ[0] == ϕ0, θ[0] == θ0, ψ[0] == ψ0} /. dynamics,

{ω1, ω2, ω3, ϕ, θ, ψ}, {t, 0, tmax}, MaxSteps → 40000];

phi = ϕ[s] /. First[soln];

theta = θ[s] /. First[soln]; psi = ψ[s] /. First[soln];

ShowGraphics3D{RotateShape[mir, phi, theta, psi],

earth},

PlotRange → {{-20, 20}, {-20, 20}, {-20, 20}},

Background → Black, Boxed → False,

ImageSize → xres  2, yres  2, ViewAngle → m, ViewPoint → {0.231, y, z}

, {{n, 2.37}, 0, 3}, {{Ω1, 0.038}, 0, 1}, {{s, 0, "t"}, 0, tmax},

{{m, .101}, .01, 1}, {{y, -3.1}, -10, 0}, {{z, 1.7}, -5, 10}

Out[54]=
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For reference  see what we are starting with

{m0, y0, z0}

{0.101, -3.1, 1.7}

Define the MirMovie function to actually make the avi 

output

Define Path to current directory for movie output

filepath = NotebookDirectory[]

C:\Users\Mike\OneDrive\Mathematica 10\

frameinterval = 0.05;

MirMovie[sTitle_, tstart_, tend_, vangle_, vpx_, vpy_, vpz_, frameinterval_] := Module[

{s, timer, frc}, timer = Timing[Export[sTitle, Table[phi = ϕ[s] /. First[soln];

theta = θ[s] /. First[soln]; psi = ψ[s] /. First[soln];

Graphics3D[{RotateShape[mir, phi, theta, psi],

earth},

PlotRange → {{-20, 20}, {-20, 20}, {-20, 20}},

Background → Black, Boxed → False, ImageSize → {xres, yres},

ViewAngle → vangle[s - tstart],

ViewPoint → {vpx[s - tstart], vpy[s - tstart], vpz[s - tstart]}],

{s, tstart, tend, frameinterval}]]];

frc = Import[sTitle, {"FrameCount"}];

Print["Timing ", timer, ", Clip length ", Import[sTitle, {{"Duration"}}]];

Import[sTitle, {"Frames", {1, frc}}]

]

0, 10,20, 30, 40, 48, 50 are the  production time intervals. Replace test with anim

Zoom in from 0.5 to 0.101  

MirMoviefilepath <> "anim0-5.avi", 0, 5,

0.101 + 0.5 - 0.101 * Exp[- # * 2] &, 0.231 &, -3.1 &, 1.7 &, frameinterval

Timing {32.729010, C:\Users\Mike\OneDrive\Mathematica 10\anim0-5.avi}, Clip length 6.73333

 ,



Move point of view down in z  from 1.7 to 0.04

MirMoviefilepath <> "anim5-10.avi", 5, 10, 0.101 &,

0.231 &, -3.1 &, 0.04 + 1.7 - 0.04 * Exp[-# * 2] &, frameinterval

Timing {32.042605, C:\Users\Mike\OneDrive\Mathematica 10\anim5-10.avi}

, Clip length 6.73333

 ,



Move point of view up from 0.04 to Z = 3.5  

MirMoviefilepath <> "anim10-30.avi", 10, 30, 0.101 &,

0.231 &, -3.1 &, 3.5 + 0.04 - 3.5 * Exp[ -# * 2] &, frameinterval

Timing {132.132847, C:\Users\Mike\OneDrive\Mathematica 10\anim10-30.avi}

, Clip length 26.7333

 ,



 Move in toward Mir from y = -3.1 to - 2.3  

MirMoviefilepath <> "anim30-40.avi", 30, 40, 0.101 &,

0.231 &, -2.3 + -3.1 + 2.3 * Exp[-# * 2] &, 3.5 &, frameinterval

Timing {65.692021, C:\Users\Mike\OneDrive\Mathematica 10\anim30-40.avi}, Clip length 13.4

 ,



Move down from z = 3.5 to Z = 1.7  

MirMoviefilepath <> "anim40-48.avi", 40, 45, 0.101 &,

0.231 &, -2.3 &, 1.7 + 3.5 - 1.7 * Exp[-# * 2] &, frameinterval

Timing {33.197013, C:\Users\Mike\OneDrive\Mathematica 10\anim40-48.avi}

, Clip length 6.73333

 ,



Move out from y = -2.3 to y =- 3.1 , and zoom out to 0.5

MirMoviefilepath <> "anim48-50.avi", 45, 50, 0.5 + 0.101 - 0.5 * Exp[-# * 0.5] &,

0.231 &, -3.1 + -2.3 + 3.1 * Exp[-# * 0.5] &, 1.7 &, frameinterval

Timing {33.321814, C:\Users\Mike\OneDrive\Mathematica 10\anim48-50.avi}

, Clip length 6.73333

 ,



DateString[]

Mon 31 May 2010 12:56:54

It is apparent that although the Mir, with an initial spin about the C axis, is able to present the plane of 

the solar arrays roughly perpendicular to the sun on the Z axis, the condition does not hold for long.  

After roughly t ≃9 , or about 180 minutes, the A axis is roughly along the Z axis, toward the sun, rotating 

about the C axis so that the solar arrays cannot properly face the sun.  However, this condition is also 

fairly short lived, and after another 180 minutes the Mir is effectively  oriented opposite to the starting 

condition, but with the A  axis again roughly perpendicular to the sun, as can be the solar arrays, if they 

have rotated their active surface toward the sun.  

Analysis of the Euler equations, and their solutions, shows that in general, pure rotations about the 

principle axis whose moment is the middle value of the three moments A, B, C ,  (in this case C) are 

unstable and always result in the behaviour shown above.  Pure rotations initiated about axes with the 

lowest or highest moments of inertia are stable.  This suggests that an attempt to spin about the B axis 

using the Soyuz would result in a stable spin.  This is true for Mir, and can be demonstrated using the 

method above,  but unfortunately the solar arrays in that case cannot be oriented continuously with their 

planes perpendicular to the spin axis, and therefore toward the sun, due to the Mir geometry.

Although clearly not an optimum situation, the rotation described about the C axis was the only realiz-

able option available.  Fortunately, it nonetheless provided enough electrical energy for the most essen-

tial Mir life support systems to be powered, including communication with the ground.  This permitted a 

stable situation in which repairs could be made, and Mir attitude control could eventually be recovered.
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